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Various Definitions of a Supercomputer
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• A large and very fast computer 
– http://www.merriam-webster.com/dictionary/supercomputer

• A supercomputer is a computer that performs at or near 
the currently highest operational rate for computers. A 
supercomputer is typically used for scientific and 
engineering applications that must handle very large 
databases or do a great amount of computation (or both).

– http://whatis.techtarget.com/definition/supercomputer

• A supercomputer is a computer at the frontline of 
contemporary processing capacity – which can happen at 
trillions of floating point operations per second.

– http://en.wikipedia.org/wiki/Supercomputer

• “big, dumb and simple” – attributed to S Cray by a 
colleague

– “dumb and simple” could be said of RISC 
processors created in the 1980’s

• “Anyone can build a fast CPU. The trick is to build a fast 
system.” – attributed to S Cray on the Cray Inc. web site

• ……



Enbleing Frontier Science and Engineering

• It often takes tremendous computing power to 
develop new ways to solve the most 
challenging problems

• Very specialized approaches are needed

• Improving the algorithms (methods of solving 
problems) decrease the time it takes to solve a 
problem at least as much as new hardware.

• What is done on a high-end systems typically 
becomes common practices a decade later on 
other systems, and is used for many standard 
things within another decade

• Leadership mission is to make teams 
addressing Frontier Science highly effective 
and productive as they solve some of the 
world’s most challenging problems.

2018
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How HPC Increases Productivity

• Helps improve time to insights
– If your problem is taking a really long time to get a result, or if you do not attempt 

to do something because you know it would take too long, HPC may be your 
solution

• Helps increase the fidelity of application (resolution, timesteps, number of particles, 
amount of data)

• Makes creating new methods feasible in a tractable amount of time
– Ironfist, Adaptive Mesh Refinement (AMR), ML/AI.

• Provides people a robust/performant/balanced infrastructure
• Cost-effective for large amounts of computation and data and/or for new methods grand 

challenge method developments
• Deadline based production

Blue Waters Training March, 2021



“It’s like déjà vu all over again” – Yogi Berra
• “Cloud” – means many things

– Technologies,
– Business models
– Software Methods

• The pendulum swings back and forth
– Individual in-house systems vs outsourced systems 

• E.g. Tymshare, 
– Generations – single processors, multiple processors in SMPs, 

“vaxination of computing”, attack of killer micros, distributed 
systems with low and high latency interconnections, ….

– Capability vs high throughput
– SW models – proprietary SW, Unix based, Linux based, cloud 

featured

• Sometimes early use is specialized and then becomes common
– Array processors <-> GPUs, 
– Specialized attached processors <à FPGAs
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Processors/Accelerator Evolution 
• Until mid 1990s  individual CPUs got 

faster.  Some systems had multiple 
CPUs starting from the mid 1970s

• From mid 1990s to mid 2000s, the 
number of cores per node 
increased.  Custom CPUs were 
replaced by commodity CPUs

• Starting in mid 2000’s hybrid 
(accelerated) systems became more 
common but proved difficult to be 
the “rising tide” for all applications

• Non-hybrid systems are still very 
common and productive  -
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The Characteristics of a Supercomputer
• A system that can bring to bear the entire capability on one problem for Frontier and/or Best of 

Breed Research and Engineering and/or for critical time to solution
• A system that is very efficient at parallel computing
• Supports a variety of methods and investigations
• Includes hardware and software in an integrated manner

• Features
• Large amount of computational power
• Very large amount of I/O and data capability
• Very high bandwidth and low latency for memory and interconnect
• Interconnect that allows all components to be applied to a single problem or many 

problems

• Non attributes of supercomputers/HPC
• Only special things can use a supercomputer
• Expensive 
• Difficult to use
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The Characteristics of a Supercomputer
(cont)

• Balanced to support multiple needs
• A system whose memory can feed all the CPUs in a node and all the nodes in the system
• As system where I/O, storage and networking are never the bottlenecks

• Consistent performance

• A system that can support a wide gamut of research fields and computing styles
• Being able do a number of different problems 

• E.g. MDgrape is not a supercomputer
• Does not have to be most efficient/cost efficient at each of them

• To quote a National Academy study, one “can run a capacity problems on a capability 
system, but cannot run a capability problem on a capacity system”  
• So, there is no added cost to run small scale/single scale problems on large scale 

system if the prioritization is correct.
• https://www.nap.edu/catalog/21886/future-directions-for-nsf-advanced-computing-

infrastructure-to-support-us-science-and-engineering-in-2017-2020

• Application software that is accessible for automated optimization



Characteristics for Future @Scale Work
• Dramatically increase fidelity  in models and simulations to improve insights and address 

new problems. 
– Increasing use of multi-scale and multi-physics. These are needed to accurately explore 

simulated phenomena.
– Increasing resolution.
– Increasing complexity. 
– Increased number of “ensemble”  trials. 

• Longer simulated time periods
– often required to accurately simulate the system of interest 
– simulations of larger systems often require longer periods of time to stabilize

• Increased number of problems to address
– The first 100 million all-atom simulations were completed in 2013. By 2020 there will be tens to 

hundreds of teams doing hundreds to thousands of 100 million atom simulations

Panel: High Performance Computing & Simulation Systems: An Outlook – July 2019



Characteristics for Future @Scale
• Changing workflow methods

– Deadline driven analysis for experimental and observational data
– visualization to interpret and understand the simulation and analysis results
– Malleable/elastic resource management for application load balancing and resiliency.
– Automation through workflows to support repeatability of computational/analytical solutions.
– Use of data model programming methods, 

• Increased integration with data sources and increased use of simulation data products.
– data from multiple experiments and observations
– Observation data assimilation 
– Track-1 systems enables them to produce community data sets that are then useful for others

• Changing algorithmic methods 
– Substantially improve their algorithmic methods to reach new research goals over the next five to ten year
– Not just to address new computer architectures
– Also to improve the time to solution independent of hardware changes and to develop the algorithms needed for 

multi-physics and multi-scale simulations. 
– Use of adaptive gridding and malleable/elastic resource management 
– Applications load balancing and resiliency will expand. Improving load balancing is critical to overcoming both 

Amdahl’s law limits and the increasing variation in system component performance
– Need resources to re-engineer, test and validate

Panel: High Performance Computing & Simulation Systems: An Outlook – July 2019



Converged HPC Facilities and Systems
• HPC Systems are not designed to to support @Scale computation, “Big Data” and AI/ML

• Changing workflow methods
– Deadline driven analysis for experimental and observational data
– Visualization to interpret and understand the simulation and analysis results
– Malleable/elastic resource management for application load balancing and resiliency.
– Automation through workflows to support repeatability of computational/analytical solutions.
– Use of data model programming methods, 

• Increased integration with data sources and increased use of simulation data products.
– Data from multiple experiments and observations
– Observation data assimilation 
– Track-1 systems enables them to produce community data sets that are then useful for others

• Changing algorithmic methods 
– Substantially improve their algorithmic methods to reach new research goals over the next five to ten year
– Not just to address new computer architectures
– Also to improve the time to solution independent of hardware changes and to develop the algorithms needed for multi-

physics and multi-scale simulations. 
– Use of adaptive gridding and malleable/elastic resource management 
– Applications load balancing and resiliency will expand. Improving load balancing is critical to overcoming both Amdahl’s 

law limits and the increasing variation in system component performance
– Need resources to re-engineer, test and validate

Blue Waters Training March, 2021



Convergence – how does convergence integrate 
with new technologies

• Physically, the aggregate hardware requirements for highly parallel modeling and 
simulation workloads and workloads that are small and/or non-parallel but high 
intensity are similar.

• To provide a complete, productive (e.g. minimize overall time to insight) system
• Many investigations require a mixture of workflows

• Increasingly, teams are coming to HPC systems for a combination of capabilities
• Examples - I/O infrastructure, node and processor types and software availability.

• Examples
• Arctic and Antarctic Digital Elevation Mapping – acquire and transfer millions of satellite 

images, process with single node runs for 24 to 36 hours per image pair, deposit results into 
a public repository

• Jobs and data availability controlled remotely
• Using over 300,000,000 Core*hours per year

• Other examples - Genomic Workflows, Earthquake Analysis, HENP workflows, Astronomy 
workflows, DL workflows, …

Blue Waters Training March, 2021



Limited Cost Comparison of AWS vs BW

• General comparisons are challenging
– Performance differs on hardware and types of use
– Cloud prices change and different providers have different business 

models
– Comparison of services is not equivalent

• Data Movement (ingest, egress, internal amounts of I/O, …)
• Large Storage Capacity
• Support services

• The analysis is a specific snap-shot in time and a limited set of systems
• Consistent with other broader studies (e.g. DOE Magellan Project Report -

https://www.osti.gov/servlets/purl/1076794)

Blue Waters Training March, 2021



Example Cloud Cost Analysis (Public Pricing)
• Use the DEM generation application setsm with 2-meter resolution as performance “standard 

candle”.  

• Comparison of dual-socket 32 core AMD 6276 Interlagos node to dual-socket 256 core AMD 7742 
Rome node showed ~4x run time improvement for the Rome node.

• Using 22,638 Blue Waters CPU XE nodes (~725,000 cores) is the equivalent of 5,600 cloud provider 
c5a.24xlarge (96 VCPU) nodes for setsm.

• “dedicated-class” with 1-year upfront pricing discount with cloud computing and storage costs 
$106,612,800 

– Limited Services – e.g. no shared parallel filesystem
– No ingress or egress charges included in cost
– No support services

• Cloud provider Support (Business level) $2,892,198 for the year.

• One year for Blue Waters ~$17,000,000
– Includes all data movement, ~30PB of storage, 4,228 XK GPU nodes, expert support and 

assistance, training, etc
Blue Waters was ~6.3 times or more cost effective for just the equivalent computational capability

Blue Waters Training March, 2021
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HPC in GEOINT

Each of the following use cases highlights GEOINT use  
requirements and how those requirements were addressed in 
an HPC environment. 
1. DEM generation – large scale image processing
2. IRONFIST – flood inundation as a graph problem
3. Earth Gravity Model – numerical inversion
4. NASA Tree Counting – large scale ML image processing

18



Digital Elevation Models
• DEM collaboration with UMN PGC (Paul 

Morin), OSU (Ian Howat) and NGA 
(Cathleen Williamson)

• Generation of 2-meter surface 
resolution DEMs from 50 cm commercial 
satellite stereoscopic stripe imagery 
using Surface Extraction from TIN-based 
Searchspace Minimization (SETSM) code.

• Historical DEMs for change detection.
• Polar regions completed as ArcticDEM

and REMA.
• New EarthDEM in August 

https://www.pgc.umn.edu/data/earthdem
19



HPC Challenges

• Bundling and tracking jobs 
100,000s of jobs
– Use of the            workflow 

software
• Petabytes of data transfer

– Performant routes.
– Capable GlobusOnline

transfer hosts.

20

• Code Considerations
– Performance Optimizations  
– Memory footprint
– CI/CD with git and jenkins



Benefits to GEOINT from HPC

• Routinely used 640,000 cores (20,000) compute nodes. 
• Able to process                   of imagery in a weekend at 2 meter.
• Sustained disk space footprint of 2 PB as new imagery came in 

and processed imagery was transfered.

21 Fields near Petropavlovsk-Kamchatsky

Dem made from DigitalGlobe
imagery

Padjelanta National Park, Sweden

DEMs made from 
DigitalGlobe/Maxar imagery



IRONFIST Flood Inundation Mapping

• FIST - Flood Inundation Surface Topology
• Collaboration with NGA (Kevin Dobbs)

– Began at Nov 2018 NCSA Workshop
– OTA award Sep 2020 – Jan 2022

• Multi-dimensional effort by NFI
– Compute and storage for CONUS DEMs
– Method implementation and refinement
– Algorithm optimization and parallelization
– Code development, evaluation, and testing
– Workflow prototyping for production deployment

NFI Overview

Flood inundation depth predicted 
from terrain elevation data.



CONUS Hydro-conditioning and Inundation Modeling
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• Modified TauDEM
– Limit memory usage at large rank counts
– Enhanced scalability of algorithms
– Parallel raster output in VRT format
– Tiled raster output for random access

• Inundation model code
– MPI parallelization
– Tile decomposition
– Dynamic scheduling

• Leaflet web-based visualization
– Fully MPI-parallel gdal2tiles.py
– Parallel tar of output directory tree
– Tiles served from VM local filesystem

NFI Overview



Modest HPC use reduces wait time, enhances 
interaction

• Hydro-conditioning
– 4 hours on 4,320 cores

• Inundation modeling
– 20 minutes on 512 cores

• Web-map tile generation
– 35 minutes on 2,048 cores

• Web-map tile server
– 2 cores, 8 GB RAM, 1 TB HDD
– Managed by campus admins

24

• Interactive solutions used:
– Jupyter notebooks

• Standard, supported solution
– User-space HTTP server

• View tiles on parallel filesystem
– VM-hosted web server

• Better small file performance
• Publicly available

– Custom client/server web app
• GUI-based interactive modeling

NFI Overview



NGA Earth Gravity Model (EGM)
• NGA Geomatics Group at NGA West

– Initial meeting at Illinois Summer 2018
– Goal: Reduce time of EMG (2020) model generation and evaluation 

cycle
• HPC Areas

– Modernize legacy workflow.
• Used MPI based work queue.
• Allowed us to address workload imbalance. 

– Code performance analysis
• Compiler study – open source and commercial, flags
• Code optimization
• Solver replacement with optimized libraries.

– Scale out to modest number of nodes (function of LSC cell count)
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NGA Earth Gravity Model

• Up to ~10x speed-up 
from code 
optimizations,  solver 
replacements.
• Time reduced from a 

week to less than 6 
hours when scaled to 
4,800 cores (160 
nodes).
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NASA Tree Enumeration by Satellite
• NASA led project with collaborators from PGC, Illinois, …
• Goal

– Develop a framework for accurate and timely determination of biomass 
to understand land Carbon sink. 

– Use Saharan region for proof of concept.
• Approach

– Use commercial satellite data at 50 cm 
– Detect tree crowns when trees are green & ground is brown
– No overlap—no multiplicative counting
– Manually assembled 90,000 individual trees training data
– AI/ML to identify individual trees
– Use HPC systems for large scale inferencing

27



• Use of containers to address software requirements.
• Scheduled campaigns of 10,000s of nodes to get the work done in 

a single block of time.
• 50,000 commercial satellite images over 1,300,000 km2

• 90,000 training data of individual trees.
• 80,000,000 core hours of HPC AI/ML expended.
• 1,837,565,501 tree crown areas > 3 m2 mapped. 
• First large-area semi-arid discrete tree mapping at 50 cm x-y 

scale.

28
© 2021 DigitalGlobe Inc.
Licensed under NextView
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Machine Learning At Scale
• Training vs. Inference

– Inference on single example
• Serial Computation
• No inter-process communication
• Scales: Embarrassingly Parallel

– Training with Stochastic Gradient Decent (SGD)
• Mini-Batch for parallelization
• Iterative process

30

Example Classification



Machine Learning At Scale: Training
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• Loss
– 𝑹 = ∑𝒎∈𝑩 𝒍(𝚯,𝒎)
– 𝑩: Batch of Examples

• Sum in loss function is where we exploit 
parallelism

– 𝑹 = ∑𝒎∈𝑩𝟏 𝒍(𝚯,𝒎) +⋯+ ∑𝑩𝒌 𝒍(𝚯,𝒎)
– 𝑩𝟏, 𝑩𝟐, … partitions 𝑩

• Called “Mini Batches”

• 𝚯𝐍'𝟏 = 𝚯𝐍 + 𝜸 ⋅ 𝛁𝚯𝑹
– 𝜸: Learning rate
– 𝚯𝑵: Model parameters at training 
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Machine Learning At Scale: Training
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Machine Learning At Scale: Training
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• Common ML Layers
– Neural Networks
– Convolutions

Input Hidden Hidden Output



Machine Learning At Scale: Training
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• With these layers you can 
build
– ResNet
– U-Net



Machine Learning At Scale: Training
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• Gemini vs. Aries interconnect
• Indeed!

– Linear scaling w.r.t.
example/sec

– Different interconnect, 
but similar scaling



Machine Learning At Scale: Training
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• Example of 
hyperparameter tuning
• Training on MNIST 

(handwriting) dataset
• Model is a NN with 2 FC 

layers
• Orange:  Batchsize 64

Blue: Batchsize 256
Purple: Batchsize 1024 https://medium.com/mini-distill/effect-of-batch-size-on-training-dynamics-21c14f7a716e

Epochs Epochs



Machine Learning At Scale: Training
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• Not all is lost!
• 2017, "Extremely Large 

Minibatch SGD: Training 
ResNet-50 on ImageNet in 
15 Minutes" T. Akiba et. Al.
– Mini Batch of 32k

• Orange: Batchsize 64
Blue: Batchsize 256
Purple: Batchsize 1024

https://medium.com/mini-distill/effect-of-batch-size-on-training-dynamics-21c14f7a716e

Epochs Epochs
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Do you need to scale-up a project?
• HPC can have a significant benefit on human and project 

productivity and an accelerated time to discovery for a broad 
range of geospatial intelligence challenges.
• Strategies for achieving these benefits:

– Access live and recorded training sessions
– Consult with experts in the field
– Improve application codes and workflows
– Apply for access to HPC resources
– Partner with organizations to enhance geospatial intelligence
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For More Information

• Contacts
– Bill Kramer - wtkramer@illinois.edu
– Greg Bauer - gbauer@illinois.edu
– Aaron Saxton - saxton@illinois.edu

• Blue Waters Project - https://bluewaters.ncsa.illinois.edu
• Illinois New Frontiers Initiative – https://nfi.illinois.edu
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We will be in exhibit booth #1739


