Temporal Logic for Automated (Geospatial) Intelligence Analysis

Presenter: Melkior Ornik, Department of Aerospace Engineering, University of Illinois

Tuesday, September 28, 2021

Slides: https://uofi.app.box.com/s/h7bycva204ks8iccklkwsc5xgwzow47h

Video: https://uofi.app.box.com/s/1fp8gyt2hkfar1juen1m6klm9ys3o12b


Successful intelligence critically relies on meaningful, correct, and quick interpretation of patterns gathered from data. While the quantity of available raw geospatial data is overwhelming for a human analyst, statistical and machine learning methods for pattern identification often lack necessary context about the relevance of observed features and activities as they develop through time. In this talk, I will outline a possible path for bridging the gap between context and computation. The work relies on exploiting the domain-specific insight of an experienced intelligence analyst to direct a computer to automatically identify those features and patterns that have intelligence value, whether to describe the community patterns of life or to identify single actors of interest. The key element of the approach is temporal logic: a language for describing observed patterns over time in a way that is both understandable to a human and amenable to machine reasoning. Our ongoing work seeks to build a pipeline from the analysts insight, through information-theoretical notions that encode the importance of particular features, to algorithmic identification of observed activities and behaviors that may be of intelligence interest. To provide a proof of concept, I will describe some preliminary results on learning driver and rider behavior from data on trips taken by taxi and rideshare services in the US.


Melkior Ornik is an assistant professor with the Coordinated Science Laboratory and the Department of Aerospace Engineering, University of Illinois Urbana-Champaign. His research interests include developing theory and algorithms for data-driven learning, control, and planning in limited-information environments, as well as deception and identification of anomalous behavior. His current work on intelligence analysis is funded by the New Frontiers Initiative, aligned with the mission and needs of the National Geospatial-Intelligence Agency.